Protein Carbonylation of an Amino Acid Residue of the Na/K-ATPase a1 Subunit Determines Na/K-ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

نویسندگان

  • Yanling Yan
  • Muhammad A. Chaudhry
  • Steven T. Haller
  • Christopher A. Drummond
  • David J. Kennedy
چکیده

Background-—We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase a1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulation of active transepithelial Na transport. In the present study we sought to determine the functional role of Pro222 carbonylation in Na/K-ATPase signaling and sodium handling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Carbonylation of an Amino Acid Residue of the Na/K‐ATPase α1 Subunit Determines Na/K‐ATPase Signaling and Sodium Transport in Renal Proximal Tubular Cells

BACKGROUND We have demonstrated that cardiotonic steroids, such as ouabain, signaling through the Na/K-ATPase, regulate sodium reabsorption in the renal proximal tubule. By direct carbonylation modification of the Pro222 residue in the actuator (A) domain of pig Na/K-ATPase α1 subunit, reactive oxygen species are required for ouabain-stimulated Na/K-ATPase/c-Src signaling and subsequent regulat...

متن کامل

Involvement of reactive oxygen species in a feed-forward mechanism of Na/K-ATPase-mediated signaling transduction.

Cardiotonic steroids (such as ouabain) signaling through Na/K-ATPase regulate sodium reabsorption in the renal proximal tubule. We report here that reactive oxygen species are required to initiate ouabain-stimulated Na/K-ATPase·c-Src signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine prevented ouabain-stimulated Na/K-ATPase·c-Src signaling, protein carbonylation, redistribution of...

متن کامل

Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis

Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-media...

متن کامل

Contrary to rat-type, human-type Na,K-ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity.

Renal sodium homeostasis is a major determinant of BP and is regulated by several natriuretic and antinatriuretic hormones. These hormones, acting through intracellular secondary messengers, either activate or inhibit proximal tubule Na,K-ATPase. It was shown previously that phorbol esters and angiotensin II and serotonin induce the phosphorylation of both Ser-11 and Ser-18 of the Na,K-ATPase a...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016